Elasticidad. Teoría y ejercicios prácticos resueltos
()
Información de este libro electrónico
Elasticidad, teoría y ejercicios prácticos resueltos ofrece una visión general de la teoría y la práctica de la elasticidad, que la hace fácil de comprender mediante el planteamiento de problemas de diferentes niveles de dificultad.
Con historias estimulantes, realizará un viaje a través del tiempo: descubrirá las ecuaciones de la elasticidad, quiénes fueron las personas que las plan-tearon y por qué, incluyendo anécdotas curiosas que las rodearon. Asimis-mo, el libro contiene:
•25 ejercicios resueltos paso a paso, con todas las explicaciones y cro-quis explicativos necesarios para no perderse en la resolución.
•El planteamiento y la demostración de las ecuaciones de la elasticidad.
•335 diagramas explicativos que facilitan la comprensión de la materia.
•Una extensa recopilación de las propiedades mecánicas de los materia-les más comunes en arquitectura, diseño e ingeniería (metales, made-ras, plásticos y compuestos cerámicos), para resolver cualquier duda que tenga sobre tensiones y deformaciones para el material que haya escogido en su diseño.
Relacionado con Elasticidad. Teoría y ejercicios prácticos resueltos
Libros electrónicos relacionados
Mecánica de fluidos Calificación: 0 de 5 estrellas0 calificacionesResistencia de materiales: algunos temas especiales (Segunda edición) Calificación: 3 de 5 estrellas3/5Ciencia de materiales - aplicaciones en ingeniería Calificación: 3 de 5 estrellas3/5Guía para el análisis y solución de problemas de resistencia de materiales Calificación: 0 de 5 estrellas0 calificacionesGuías de laboratorio de Mecánica de Sólidos Calificación: 0 de 5 estrellas0 calificacionesLos materiales nanoestructurados: Sus propiedades y aplicaciones en la revolución científica y tecnológica del siglo XXI Calificación: 5 de 5 estrellas5/5Aprender AutoCAD 2013 con 100 ejercicios prácticos Calificación: 0 de 5 estrellas0 calificacionesMecanizado básico. TMVG0109 Calificación: 0 de 5 estrellas0 calificacionesEstática aplicada en ingeniería civil: Introducción al análisis de cerchas, marcos y vigas Calificación: 0 de 5 estrellas0 calificacionesDiseño CAD: La guía práctica para principiantes Calificación: 0 de 5 estrellas0 calificacionesMecánica Vectorial Para Ingenieros (Estática) Calificación: 5 de 5 estrellas5/5Guía para prácticas experimentales de física: Mecánica Calificación: 0 de 5 estrellas0 calificacionesFreeCAD | paso a paso: Aprende a crear objetos 3D, ensamblajes y dibujos técnicos con FreeCAD Calificación: 0 de 5 estrellas0 calificacionesAutodesk Inventor | Paso a Paso: Diseño CAD y Simulación FEM con Autodesk Inventor para Principiantes Calificación: 5 de 5 estrellas5/5Filtro adaptativo: Mejora de la visión por computadora mediante filtrado adaptativo Calificación: 0 de 5 estrellas0 calificacionesMecánica del medio continuo: una iniciación Calificación: 3 de 5 estrellas3/5La física en la medicina, II: Ojos nuevos para los mismos cuerpos Calificación: 5 de 5 estrellas5/5Análisis de estructuras - métodos clásico y matricial - 4a ed. Calificación: 5 de 5 estrellas5/5Detección de manchas: Revelando patrones en datos visuales Calificación: 0 de 5 estrellas0 calificacionesDiseño de estructuras de acero - 5a ed. Calificación: 5 de 5 estrellas5/5Física mecánica: Nivelación para estudiantes universitarios Calificación: 4 de 5 estrellas4/5Modelamiento y simulación de sistemas con Simulink: Aplicaciones en ingeniería estructural Calificación: 4 de 5 estrellas4/5Las matemáticas de la biología: De las celdas de las abejas a las simetrías de los virus Calificación: 4 de 5 estrellas4/5Composición y Deformación: El edificio de Economía de Fernando Martínez Sanabria Calificación: 5 de 5 estrellas5/5Mapa de altura: Explorando la representación del terreno a través de la visión por computadora Calificación: 0 de 5 estrellas0 calificacionesUF0565 - Eficiencia energética en las instalaciones de calefacción y ACS en los edificios Calificación: 0 de 5 estrellas0 calificacionesProyección ortográfica: Explorando la proyección ortográfica en visión por computadora Calificación: 0 de 5 estrellas0 calificacionesEspacio de escala: Explorando las dimensiones en visión por computadora Calificación: 0 de 5 estrellas0 calificacionesReconstrucción tridimensional multivista: Técnicas avanzadas de percepción espacial en visión por computadora Calificación: 0 de 5 estrellas0 calificacionesPara atrapar un fotón Calificación: 4 de 5 estrellas4/5
Industrias para usted
Montaje de redes eléctricas aéreas de alta tensión. ELEE0209 Calificación: 5 de 5 estrellas5/5Presupuesto y programación de obras. Conceptos básicos Calificación: 4 de 5 estrellas4/5La nueva seguridad marítima Calificación: 0 de 5 estrellas0 calificacionesInterpretación de planos en soldadura. FMEC0210 Calificación: 4 de 5 estrellas4/5El placer de vestirte Calificación: 0 de 5 estrellas0 calificacionesPersonalizaciones en prendas de vestir. TCPF0109 Calificación: 0 de 5 estrellas0 calificacionesInstalaciones eficientes de suministro de agua y saneamiento en edificios. ENAC0108 Calificación: 1 de 5 estrellas1/5Servicios especiales en restauración. HOTR0608 Calificación: 0 de 5 estrellas0 calificacionesMontaje de soportes y ensamblaje de tuberías. FMEC0108 Calificación: 5 de 5 estrellas5/5El laboratorio palestino Calificación: 0 de 5 estrellas0 calificacionesFinanzas empresariales: Enfoque práctico Calificación: 5 de 5 estrellas5/5Operaciones previas al hormigonado. EOCH0108 Calificación: 0 de 5 estrellas0 calificacionesEL CONTENEDOR - Un invento que revolucionó el transporte marítimo y cambió el mundo para siempre Calificación: 0 de 5 estrellas0 calificacionesEnergía solar fotovoltaica para todos 2ed Calificación: 4 de 5 estrellas4/5Preparación y servicio de bebidas y comidas rápidas en el bar. HOTR0208 Calificación: 0 de 5 estrellas0 calificacionesTécnicas básicas de corte, ensamblado y acabado de productos textiles. TCPF0209 Calificación: 5 de 5 estrellas5/5Preparación de herramientas, máquinas y equipos para la confección de productos textiles. TCPF0309 Calificación: 3 de 5 estrellas3/5Materiales, herramientas, máquinas y equipos de confección. TCPF0109 Calificación: 0 de 5 estrellas0 calificacionesEvolución de las startups en el mundo del libro: Actualización 2017 Calificación: 0 de 5 estrellas0 calificacionesAdaptaciones en prendas de vestir. TCPF0109 Calificación: 0 de 5 estrellas0 calificacionesVaca Muerta Calificación: 0 de 5 estrellas0 calificacionesReplanteo y preparación de tuberías. IMAI0108 Calificación: 0 de 5 estrellas0 calificacionesGestión humana en la empresa colombiana Calificación: 1 de 5 estrellas1/5La posverdad: Una cartografía de los medios, las redes y la política Calificación: 5 de 5 estrellas5/5Las formas de la moda: Cultura, industria, mercado Calificación: 5 de 5 estrellas5/5Una guía para construir un guardarropa versátil y atemporal Calificación: 0 de 5 estrellas0 calificacionesMantenimiento de centros de transformación. ELEE0209 Calificación: 0 de 5 estrellas0 calificacionesApicultura para principiantes: Introducción al asombroso mundo de las abejas Calificación: 5 de 5 estrellas5/5El petróleo en México y sus impactos sobre el territorio Calificación: 1 de 5 estrellas1/5
Comentarios para Elasticidad. Teoría y ejercicios prácticos resueltos
0 clasificaciones0 comentarios
Vista previa del libro
Elasticidad. Teoría y ejercicios prácticos resueltos - Pablo López Morell
1
CONCEPTOS GENERALES DE LA ELASTICIDAD
1.1. Ubicación dentro del campo de la ciencia y de la técnica
Este libro trata sobre la elasticidad y las historias de las personas que contribuyeron a su desarrollo como disciplina; por ello, para situar al lector, lo primero que haremos será definir el objeto de estudio de esta disciplina y la ubicaremos respecto al resto de disciplinas de la ciencia y la técnica.
La teoría de la elasticidad es una de las disciplinas con las que se estudia el comportamiento de los cuerpos dentro de la mecánica racional. Las distintas disciplinas que componen la mecánica racional se diferencian entre sí por el tipo de modelo empleado para representar el comportamiento del cuerpo.
En función del comportamiento del cuerpo que se desee analizar, será más apropiada una u otra; así, para el estudio de la trayectoria descrita por un cuerpo lanzado al aire con una velocidad inicial, resulta apropiada la mecánica del punto material, del mismo modo que, para estudiar las órbitas descritas por los planetas dentro del sistema solar, resulta apropiada la mecánica de los sistemas de puntos materiales.
IllustrationFigura 1-1 Modelo del universo geocéntrico de Ptolomeo1.
IllustrationFigura 1-2 Modelo del universo heliocéntrico de Copérnico.
Sin embargo, esta disciplina no permitiría estudiar el movimiento de los cangilones en una noria para la elevación de agua, ya que no permite estudiar la rotación de un cuerpo sobre sí mismo. Por ello, se hace necesario emplear un modelo de cuerpo más complejo, con el que se contemple el hecho de que el cuerpo ocupa un volumen en el espacio; del estudio de este tipo de cuerpos se ocupa la mecánica de los cuerpos rígidos.
IllustrationFigura 1-3 Noria antigua con cangilones de madera.
De nuevo, este modelo no resulta apropiado para estudiar el comportamiento del agua al caer de los cangilones; además, tampoco permite considerar el hecho de que las barras que soportan el conjunto experimentarán una deformación cuando estos se llenen de agua.
Para considerar estos fenómenos, se emplea un modelo de cuerpo que puede experimentar deformaciones. Según el estado de agregación en el que se encuentre el cuerpo, emplearemos para estudiarlo la mecánica de los fluidos o la mecánica de los sólidos.
IllustrationFigura 1-4 Mecánica de los fluidos. Imagen cedida por COMSOL
IllustrationFigura 1-5 Mecánica de los sólidos.
Por último, en función de la magnitud de las cargas que se apliquen sobre el cuerpo, este puede tener un comportamiento elástico, plástico o viscoelástico. Cuando las cargas aplicadas sobre el cuerpo son de una magnitud en la que el cuerpo tiene un comportamiento elástico, la disciplina que se encarga de su estudio es la teoría de la elasticidad.
En la resistencia de materiales, se trata el estudio de los sólidos deformables que presentan ciertas peculiaridades geométricas (como, por ejemplo, cuando el cuerpo tiene forma de barra), bajo las mismas hipótesis generales y con los mismos propósitos que la teoría de la elasticidad.
IllustrationFigura 1-6 Ubicación de la teoría de la elasticidad dentro del campo de la ciencia y de la técnica.
En la teoría de la elasticidad, se pueden abarcar modelos relativamente complejos, mientras que la resistencia de materiales posibilita un estudio pormenorizado del comportamiento del sólido gracias a las simplificaciones que las peculiaridades geométricas de las barras y las placas permiten. Es de gran utilidad a la hora de diseñar estructuras, dado que la inmensa mayoría de los elementos resistentes que se diseñan tienen forma de barra (una dimensión espacial es mucho mayor que las otras dos) o de placa (una dimensión espacial es mucho menor que las otras dos).
La frontera entre la teoría de la elasticidad y la resistencia de materiales es, por tanto, imprecisa, y el estudio de ciertos tipos de problemas en uno u otro contexto resulta, en muchos casos, una cuestión de tradición histórica.
1.2. Concepto de «sólido»
Un sólido rígido es aquel en el que, ante cualquier esfuerzo que se le aplique (por grande que sea), la distancia entre dos moléculas cualesquiera permanecerá invariable.
La mecánica del sólido rígido versa sobre la predicción de las condiciones de reposo o movimiento de los sólidos rígidos bajo la acción de fuerzas exteriores. El modelo de sólido que emplea es el sólido rígido que, por definición, es indeformable. Como en todas las ramas de la mecánica racional, no se trata de que haya materiales que realmente se comporten de este modo, sino que el modelo empleado simplifica el comportamiento real, despreciando la deformación del cuerpo. Los resultados que se obtienen darán una solución que representará correctamente lo que ocurre si las deformaciones no tienen una magnitud comparable con los movimientos que experimenta el cuerpo. Por ello, este modelo estará limitado para determinados rangos de valores pues, si aplicamos fuerzas muy elevadas, podemos encontrarnos con que el cuerpo se deforma mucho o que incluso puede llegar a romperse.
Así pues, se hace necesario distinguir entre diferentes conceptos de sólidos.
1.3. Concepto de «sólido elástico»
Un sólido elástico es aquel en el que la distancia entre dos moléculas cualesquiera variará proporcionalmente al esfuerzo que se le aplique (independientemente de lo grande que sea dicho esfuerzo).
Aunque la construcción de estructuras complejas ya era una técnica conocida por los egipcios, los griegos y los romanos, los diseños se basaban en una transmisión de buenas prácticas obtenidas mediante la experiencia y el concepto del sólido empleado era fundamentalmente el de sólido rígido.
IllustrationFigura 1-7 Vista aérea del acueducto de Segovia tomada por Juan Laurent en 1856. Fuente: Department of Image Collections, National Gallery of Art Library, Washington, DC.
No fue hasta el Renacimiento cuando se empezó a cuestionar el porqué del comportamiento de las estructuras. Leonardo da Vinci (1452-1519) trató, sin éxito, de obtener una explicación analítica al comportamiento de una viga isostática. Partiendo de los planteamientos de Leonardo da Vinci, Galileo Galilei publicó en 1638 el esquema de la Figura 1-8, que constituye uno de los estudios más antiguos acerca de las deformaciones experimentadas por los cuerpos. En este análisis, planteó el concepto del «momento de una fuerza».
IllustrationFigura 1-8 Estudio de la flexión de una viga en voladizo publicado por Galileo Galilei en Discorsi e dimostrazioni matematiche, intorno à due nuove scienze, en el año 1638.
La diferencia fundamental entre el sólido considerado por los griegos, romanos y egipcios y el sólido planteado por Da Vinci y Galileo consiste en que los primeros consideran que las distancias entre las partes o puntos interiores del sólido no varía; por ello, a este concepto se lo denomina sólido rígido, mientras que los segundos consideran que las distancias entre los puntos interiores del sólido no permanecen constantes y, por tanto, podemos afirmar que se trata de sólidos deformables.
La existencia de las fuerzas internas en el interior de un sólido no podría hacerse si el modelo considerado fuese un sólido rígido, ya que solo tendrían sentido cuando las distancias entre los puntos interiores varían. Estas fuerzas resultan imprescindibles para cuantificar en qué grado nos acercamos a la resistencia máxima de un elemento estructural. Dichas consideraciones son la base de las verificaciones que permiten establecer si un determinado elemento es seguro desde el punto de vista estructural.
Siguiendo la evolución indicada, podemos distinguir tres modelos diferentes para el sólido:
• Sólido rígido
• Sólido elástico
• Sólido verdadero
IllustrationFigura 1-9 Sólido rígido.
IllustrationFigura 1-10 Sólido elástico.
IllustrationFigura 1-11 Sólido verdadero.
La disciplina que se encarga específicamente del estudio de los sólidos deformables es la teoría de la elasticidad. Esta disciplina permite obtener la deformación, o desplazamiento, entre las moléculas de un cuerpo sólido que se encuentra sometido a un sistema de fuerzas en equilibrio. Para dicho estudio, se parte de los postulados de la mecánica, así como de las propiedades de los materiales (que se conocen experimentalmente) y de hipótesis referentes a las deformaciones de los sólidos, aplicándolas a los modelos de sólidos deformables.
Con la teoría de la elasticidad, se trabaja sobre otro modelo de cuerpo sólido: el sólido elástico. Del mismo modo que sucedía en la mecánica del sólido rígido, se trata de una simplificación del comportamiento del sólido verdadero. Según el modelo del sólido elástico, este experimentará una deformación proporcional al esfuerzo aplicado y siempre recuperará su forma inicial cuando se retire el sistema de fuerzas que actúa sobre el cuerpo.
Al tratarse de una idealización, es necesario definir los supuestos bajo los que esta es capaz de dar unos resultados que se corresponden, de forma adecuada, con el comportamiento real de los cuerpos. En ese sentido consideraremos que, en general, el sólido elástico ocupa un volumen, V, del espacio tridimensional y que tiene una superficie exterior, que denotaremos Se. Por otro lado, se supondrá que el material que constituye el sólido elástico cumple las siguientes hipótesis:
• Homogéneo: el material tiene las mismas propiedades en todos sus puntos; es decir, no consideraremos sólidos compuestos por una amalgama de materiales con comportamientos diferentes.
• Isótropo: en cualquier punto del sólido, las propiedades del material son las mismas, independientemente de la dirección considerada. Ejemplos de materiales reales que no cumplen esta hipótesis son la madera o el acero laminado, que presentan resistencias diferentes, en función de la dirección en la que se aplique el esfuerzo.
• Continuo: en el material no existen discontinuidades, independientemente de lo pequeña que sea la fracción del volumen que se considere.
IllustrationFigura 1-12 Sólido no homogéneo.
IllustrationFigura 1-13 Sólido no isótropo.
IllustrationFigura 1-14 Sólido no continuo.
El motivo por el que se adoptan estas hipótesis, que como puede observase en los ejemplos no son totalmente ciertas para muchos materiales, reside en que se simplifica de forma muy considerable el planteamiento analítico del problema elástico y que, además, los resultados obtenidos, cuando se realizan estas simplificaciones, se muestran suficientemente semejantes al comportamiento real como para poder ser empleados desde el punto de vista ingenieril.
1.4. Concepto de «prisma mecánico»
Puesto que el objetivo de la teoría de la elasticidad es analizar el comportamiento de los sólidos elásticos, necesitaremos definir un modelo teórico para el cuerpo, que denominaremos prisma mecánico. Este será isótropo, homogéneo y continuo. Para su definición, se emplearán criterios meramente geométricos.
IllustrationFigura 1-15 Sección plana S.
IllustrationFigura 1-16 Prisma mecánico.
Así, si partimos de una sección plana S de área A con centro de gravedad en G, como la mostrada en la Figura 1-15, si suponemos que se desplaza a lo largo de la curva c, a la que denominaremos línea media o directriz, siendo el plano que contiene a G normal a la curva. Denominaremos prisma mecánico al sólido engendrado por el área A, al recorrer la línea media. El área A no tiene por qué permanecer constante a lo largo del recorrido, tal como se muestra en la Figura 1-16.
El prisma mecánico será alabeado, plano o recto, dependiendo de que la línea media sea alabeada, plana o recta.
Por otro lado, si el área A es constante a lo largo de c, podrá afirmarse que el prisma es de sección constante, mientras que, si el área varía, se dirá que el prisma es de sección variable.
Illustration