Descubre millones de libros electrónicos, audiolibros y mucho más con una prueba gratuita

Solo $11.99/mes después de la prueba. Puedes cancelar en cualquier momento.

Los terremotos perdidos
Los terremotos perdidos
Los terremotos perdidos
Libro electrónico164 páginas1 hora

Los terremotos perdidos

Calificación: 0 de 5 estrellas

()

Leer la vista previa

Información de este libro electrónico

Los terremotos perdidos son aquellos que asolaron las grandes civilizaciones y de los que hoy en día no se tiene constancia o han sido olvidados. ¿Es posible borrar una civilización del planeta en su máximo apogeo y hoy en día no recordarlo? ¿Qué podemos hacer para reconocer y recuperar dichos terremotos perdidos? La arqueosismología es la rama de las ciencias de la tierra y humanidades que trata de descubrir aquellos terremotos que provocaron devastación y un movimiento fuerte del terreno, y que han sido olvidados y perdidos con el paso del tiempo. El interés por encontrar estos terremotos perdidos permitirá conocer mejor la reciente historia del hombre y sus civilizaciones sobre la Tierra y, sobre todo, completará los estudios en peligrosidad sísmica para aquellas ciudades que vuelven a asentarse sobre los restos de las que fueron colapsadas. Grandes terremotos como el de Sumatra de 2004, o el más reciente de Nepal de 2015, han dejado una huella terrible en una historia reciente dominada por una comunicación global y una tecnología de la información. Pero no siempre fue así.
IdiomaEspañol
Fecha de lanzamiento1 mar 2023
ISBN9788413526614
Los terremotos perdidos
Autor

Raúl Pérez López

Doctor en Ciencias Geológicas por la Universidad Complutense de Madrid y doctor europeus por la Universidad Louis Pasteur de Estrasburgo y el Strong Earthquake Laboratory de Moscú. Trabaja en el estudio de terremotos en cuevas profundas y en los efectos geológicos de terremotos afectando entornos urbanos.

Relacionado con Los terremotos perdidos

Libros electrónicos relacionados

Ciencias de la Tierra para usted

Ver más

Artículos relacionados

Categorías relacionadas

Comentarios para Los terremotos perdidos

Calificación: 0 de 5 estrellas
0 calificaciones

0 clasificaciones0 comentarios

¿Qué te pareció?

Toca para calificar

Los comentarios deben tener al menos 10 palabras

    Vista previa del libro

    Los terremotos perdidos - Raúl Pérez López

    1.png

    Índice

    CAPÍTULO 1.INTRODUCCIÓN A LA ARQUEOSISMOLOGÍA: EFECTOS ARQUEOLÓGICOS DE TERREMOTOS

    CAPÍTULO 2. EL TERREMOTO DE LA BELLA BAELO CLAUDIA

    CAPÍTULO 3. EL TERREMOTO DE COMPLUTUM

    CAPÍTULO 4. CAÍDA DE TEOTIHUACÁN

    CAPÍTULO 5. EFECTOS DEL TERREMOTO DE LISBOA DE 1755 EN EDIFICIOS PATRIMONIALES

    CAPÍTULO 6. MAGNITUD 9, VIAJANDO POR EL MUNDO CON LA ARQUEOSISMOLOGÍA

    BIBLIOGRAFÍA

    FOTOS

    Raúl Pérez López

    Doctor en Ciencias Geológicas por la Universidad Complutense de Madrid y doctor europeus por la Universidad Louis Pasteur de Estrasburgo y el Strong Earthquake Laboratory de Moscú, trabaja en el estudio de terremotos en cuevas profundas y en los efectos geológicos de terremotos que afectan a entornos urbanos.

    Miguel Ángel Rodríguez Pascua

    Doctor en Ciencias Geológicas por la Universidad Complutense de Madrid y premio extraordinario de doctorado, es especialista en paleosismología y arqueosismología: pionero en la aplicación de esta técnica en restos arqueológicos por medio mundo: México, Perú, Italia, España, Grecia, etc., así como en seguridad de emplazamientos nucleares.

    Raúl Pérez López y

    Miguel Ángel Rodríguez Pascua

    Los terremotos perdidos

    Colección Planeta Tierra

    Comité Editorial

    José Manuel Baltuille Martín

    María Mercedes Barreno Ruiz

    Pía Paraja García

    Francisco Javier Sánchez España

    Javier Senén García

    Catálogo general de publicaciones oficiales

    www.060.es

    Fotografía de cubierta: Palazzo Te de Mantua, Frescos de Giulio Romano, siglo XVI, detalle de La Caída de los Gigantes.

    © Raúl Pérez-López y Miguel Ángel Rodríguez-Pascua, 2015

    © instituto geológico y minero de españa, 2015

    © Los libros de la Catarata, 2015

    Fuencarral, 70

    28004 Madrid

    Tel. 91 532 05 04

    Fax. 91 532 43 34

    www.catarata.org

    Los terremotos perdidos

    ISBN (igme): 978-84-7840-967-9

    isbne: 978-84-1352-661-4

    ISBN (catarata): 978-84-9097-044-7

    nipo: 728-15-020-3

    DEPÓSITO LEGAL: M-21.841-2015

    IBIC: PDZ/WNW

    este libro ha sido editado para ser distribuido. La intención de los editores es que sea utilizado lo más ampliamente posible, que sean adquiridos originales para permitir la edición de otros nuevos y que, de reproducir partes, se haga constar el título y la autoría.

    Dedicado a la memoria de todas las víctimas de los terremotos

    Los autores quisieran agradecer en primer lugar a Javier Sánchez España, compañero del Instituto Geológico y Minero y, sin embargo, amigo, su tesón para que este libro viese la luz, así como su apuesta personal por los terremotos perdidos. Como buen bilbaíno, prometió una buena cena con pacharán si éramos capaces de escribirlo en tiempo y forma. ¡Gracias, compañero! También queremos agradecer a Aran­­tza Chivite, de la editorial Catarata, su comprensión y sus correcciones, que no han hecho sino mejorar la redacción final. A veces, los científicos olvidamos que nuestro público real son las personas, y hacer el ejercicio de redactar para todos los públicos nos ha devuelto a la realidad de una forma dulce. Muchas gracias, Arantza, por tu paciencia. Finalmente, agradecemos al Comité Editorial del IGME haber aceptado nuestra propuesta en un tema tan apasionante como polémico. Este libro se enmarca en el Proyecto del Plan Nacional de I+D+i (MINECO) SISMOSIMA, CGL2013-47412-C2-2-P, coordinado por uno de los autores, Raúl Pérez López.

    Capítulo 1

    Introducción a la arqueosismología: efectos arqueológicos de terremotos

    Durante el mismo año en que se escribió este libro, 2015, un gran terremoto asoló Katmandú, la capital de Nepal. Muchas personas perdieron la vida (más de 8.000), más aún resultaron heridas (más de 17.000), e incluso más aún perdieron sus viviendas (500.000). Miles de personas afectadas, templos y edificios de miles de años de antigüedad se redujeron a escombros y, durante unos minutos, el mundo pareció detenerse. Incluso este terremoto se sintió en el campo base del monte Everest, el pico más alto del mundo, dejando la escalofriante ci­­fra de 22 alpinistas muertos. La historia nos dice que el valle de Katmandú ha sufrido terremotos de magnitud e intensidad similar durante su historia (magnitud superior a M7 e intensidad igual o superior a IX), quedando crónicas escritas de estos sismos históricos en los siguientes años (d. C.): 1255, 1408, 1681, 1810 y 1934.

    Esta información permite establecer una recurrencia aproximada de ocurrencia de terremoto destructivo entre 100 y 250 años, lo que indica que se trata de una zona de elevada actividad sísmica y que sus gentes recuerdan bien dónde viven. Por supuesto, nadie se acostumbra a vivir en una zona de elevado peligro por terremotos destructivos, y, en general, estas zonas suelen ser rápidamente reemplazadas por diferentes culturas, las cuales, en mejor medida, intentan convivir con los terremotos. La estadística nos dice de forma artificiosa cuándo ocurre un terremoto, pero ¿qué los genera? Siempre que hay un terremoto, una falla es la responsable, y el tamaño o magnitud del terremoto se mide por su energía liberada. Esta energía es proporcional al tamaño de la superficie de ruptura durante el movimiento del plano de falla. A partir de estos datos, clasificamos los terremotos en magnitud entre M1 y M10, siendo el mayor terremoto registrado de la historia el que ocurrió en 1960 en Valdivia, Chile, de magnitud M9,5. Hablaremos más delante de este terremoto y especularemos sobre el tamaño máximo que podría tener un terremoto en la actualidad. Para ello, fue necesario romper más de 1.500 km de falla en una fosa marina, probablemente una de las mayores fallas que podríamos encontrar en la Tierra. Y esto nos enseña que cuando una falla está a punto de romper, no puede pararse ni siquiera utilizando bombas nucleares, ni provocando tampoco pequeños terremotos, ni lubricando con fluidos el plano de falla, para disminuir el rozamiento responsable de la acumulación de la energía elástica.

    Un terremoto es la liberación de energía de forma instantánea (aunque se demore unos minutos), de la gran cantidad acumulada por el empuje de las placas litosféricas que están en la corteza terrestre. Estas placas son cuasi rígidas, con un espesor de varias decenas de kilómetros y con áreas de varios millones de kilómetros cúbicos. Son imparables. La energía se acumula en forma de energía elástica y, llegado un umbral, se produce una liberación de energía por rebote elástico que da lugar a energía mecánica y térmica. Ambas son las responsables de la génesis de un tren de ondas elásticas, las ondas sísmicas, que clasificamos en dos grandes grupos: las ondas P (primarias) y las ondas S (secundarias) (Bolt, 1997). Las ondas destructivas que experimentamos durante un terremoto son principalmente las ondas S, las cuales alcanzan la superficie en dos grandes grupos, las ondas Rayleigh (R) y las ondas Love (L). Estas son las responsables de la destrucción que vamos a narrar a continuación. Podemos afirmar, sin lugar a dudas, que los terremotos constituyen el fenómeno físico terrestre más energético que conocemos, aunque los demás fenómenos son también importantes y diferentes del coleccionismo de mariposas, en un guiño al gran físico Ernest Rutherford.

    Por otro lado, la intensidad sísmica es la respuesta del terreno ante un terremoto, es la vibración que produce la su­­perficie de la Tierra y es la responsable principal del daño que sufrimos. Por supuesto, terremotos de igual magnitud pueden provocar diferentes intensidades, basta con estar más alejado del epicentro para que la intensidad disminuya, y basta con que tengan diferente profundidad para que la atenuación de la vi­­bración sea también diferente.

    Sin embargo, en otras zonas del planeta no hay casi terremotos y son bastante estables. Entonces, ¿qué sucede cuando un gran terremoto ocurre en una zona donde no debiera?, ¿cómo lo explicamos? Cuando esto ocurre y golpea a una sociedad olvidadiza, las ciudades entran en una especie de letargo social, se sumen en una crisis estructural y una depresión ciudadana que alcanza a todas sus instituciones y estamentos. Al final, estas ciudades son abandonadas con el tiempo; y su historia, olvidada. Por supuesto, no siempre es así; sabemos de algunas que han sufrido crisis sísmicas importantes, aunque no identificamos las fallas que las han generado ni somos capaces, aún, de situar el epicentro de dichos terremotos. Cuando las trompetas truenan en Jericó y las murallas colapsan por la culpa de su pecado, es un terremoto el responsable de tal destrucción. Si, además, queremos retirar el mar Rojo y escapar de nuestros perseguidores, es sin duda un tsunami lo que necesitamos para poder explicar dicho fenómeno. Si esto fuese cierto, estaríamos tentados de afirmar que Dios es geólogo.

    Lo cierto es que una sacudida sísmica tendrá reflejo en toda aquella estructura que se asiente sobre el terreno. Prin­­cipalmente, los edificios podrían comportarse de dos maneras: 1) con vibraciones de corto periodo, asociadas a la presencia cercana de fallas activas que disparen terremotos (5-10 km) y terremotos poco profundos (< 8 km), y 2) vibraciones de largo periodo asociadas a grandes terremotos con epicentros lejanos (más de 50 km). Por ejemplo, durante el terremoto de Ossa de Montiel en Albacete (invierno de 2015), de magnitud M5,1, se registraron intensidades IV EMS-98 en Madrid, a cientos de kilómetros del epicentro.

    Es común, en general, al trabajar sobre una construcción arquitectónica concreta y su respuesta sísmica, que acometamos dos estudios con enfoques diferentes:

    Análisis sismotectónico y paleosísmico de fuentes sísmicas cercanas y lejanas (escala local y regional, respectivamente). Generalmente, son estudios realizados por geólogos y geofísicos que incluyen estudios geológicos en detalle, cartografía geológica y geomorfológica, estratigrafía, sismología, estudios de la sismicidad instrumental cercana y de la histórica. Aquí se determina la falla potencialmente más peligrosa y el terremoto máximo, así como el último terremoto disparado. También se estudia la respuesta del terreno ante la vibración sísmica y las aceleraciones del terreno.

    Análisis numérico y simulación del edificio afectado por los sismos. Se reproduce mediante algoritmos computables, la estructura del edificio y sus pilares por elementos finitos, por ejemplo, y se simulan diferentes escenarios sísmicos a partir de los datos anteriores. En este caso, se estudia la respuesta del edificio ante la vibración del terreno estimada anteriormente, periodo de vibración y la longitud de onda, en función del estilo constructivo y del material utilizado. También se estudian los cambios de las propiedades del terreno, como las licuefacciones y deformaciones del terreno.

    Actualmente, se trabaja en la planificación y estudio del riesgo sísmico con los denominados SHAKEMAP. Estos

    ¿Disfrutas la vista previa?
    Página 1 de 1